Автор Тема: Советы Менделя... или все о генетике  (Прочитано 32318 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн Serg

  • Не бери от жизни всё - не унесёшь!
  • Глобальный модератор
  • V.I.P.
  • *****
  • Сообщений: 4235
  • Московская губерния, направление - юг!
    • Куркин Двор
Открыл тему, которая наверняка будет интересна многим ;)
Если куры поднимают Вас на смех, расскажите им, из чего делают котлеты по-киевски.

Оффлайн Ната

  • Модератор
  • V.I.P.
  • *****
  • Сообщений: 5173
  • Наташа Московская область Север
Re: Советы Менделя... или все о генетике
« Ответ #1 : 09 Ноября 2013, 23:12:24 »
помещаю сюда таблицы
лавандовый окрас у кур

Оффлайн Ната

  • Модератор
  • V.I.P.
  • *****
  • Сообщений: 5173
  • Наташа Московская область Север
Re: Советы Менделя... или все о генетике
« Ответ #2 : 09 Ноября 2013, 23:14:08 »
голубой окрас

Оффлайн Serg

  • Не бери от жизни всё - не унесёшь!
  • Глобальный модератор
  • V.I.P.
  • *****
  • Сообщений: 4235
  • Московская губерния, направление - юг!
    • Куркин Двор
Re: Советы Менделя... или все о генетике
« Ответ #3 : 10 Ноября 2013, 15:32:11 »
Буду работать со своей сплэш-барневельдершей теперь исключительно только по этой схеме. Спасибо, Наташ [good]
Если куры поднимают Вас на смех, расскажите им, из чего делают котлеты по-киевски.

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #4 : 12 Ноября 2013, 13:16:51 »
Священник и математик, физик и естествоиспытатель Грегор Иоганн Мендель не зря считается отцом Генетики, как науки.

Законы Менделя (правила) — сформулированные Грегорем Менделем закономерности распределения в потомстве наследственных факторов, названных позднее генами.

Включают: закон единообразия гибридов первого поколения; закон расщепления гибридов второго поколения; закон независимого комбинирования признаков (точнее, закон независимого расщепления).

Законы Менделя получили полное подтверждение и объяснение на основе хромосомной теории наследственности.

                                               Грегор Мендель - биография



Грегор Мендель (Грегор Иоганн Мендель) (1822-84) — австрийский естествоиспытатель, ученый-ботаник и религиозный деятель, монах, основоположник учения о наследственности (менделизм). Применив статистические методы для анализа результатов по гибридизации сортов гороха (1856-63), сформулировал закономерности наследственности (см. законы Менделя).

Грегор Мендель родился 22 июля 1822, Xейнцендорф, Австро-Венгрия, ныне Гинчице. Скончался 6 января 1884, Брюнн, ныне Брно, Чешская Республика.

Трудные годы учения


Иоганн родился вторым ребенком в крестьянской семье смешанного немецко-славянского происхождения и среднего достатка, у Антона и Розины Мендель. В 1840 Мендель окончил шесть классов гимназии в Троппау (ныне г. Опава) и в следующем году поступил в философские классы при университете в г. Ольмюце (ныне г. Оломоуц). Однако, материальное положение семьи в эти годы ухудшилось, и с 16 лет Мендель сам должен был заботиться о своем пропитании. Не будучи в силах постоянно выносить подобное напряжение, Мендель по окончании философских классов, в октябре 1843, поступил послушником в Брюннский монастырь (где он получил новое имя Грегор). Там он нашел покровительство и финансовую поддержку для дальнейшего обучения.

В 1847 Мендель был посвящен в сан священника. Одновременно с 1845 года он в течение 4 лет обучался в Брюннской теологической школе. Августинской монастырь св. Фомы был центром научной и культурной жизни Моравии. Помимо богатой библиотеки, он имел коллекцию минералов, опытный садик и гербарий. Монастырь патронировал школьное образование в крае.

Монах-преподаватель


Будучи монахом, Грегор Мендель с удовольствием вел занятия по физике и математике в школе близлежащего городка Цнайм, однако не прошел государственного экзамена на аттестацию учителя. Видя его страсть к знаниям и высокие интеллектуальные способности, настоятель монастыря послал его для продолжения обучения в Венский университет, где Мендель в качестве вольнослушателя проучился четыре семестра в период 1851-53, посещая семинары и курсы по математике и естественным наукам, в частности, курс известного физика К. Доплера. Хорошая физико-математическая подготовка помогла Менделю впоследствии при формулировании законов наследования. Вернувшись в Брюнн, Мендель продолжил учительство (преподавал физику и природоведение в реальном училище), однако вторая попытка пройти аттестацию учителя вновь оказалась неудачной.

Опыты над гибридами гороха

С 1856 Грегор Мендель начал проводить в монастырском садике (шириной в 7 и длиной в 35 метров) хорошо продуманные обширные опыты по скрещиванию растений (прежде всего среди тщательно отобранных сортов гороха) и выяснению закономерностей наследования признаков в потомстве гибридов. В 1863 он закончил эксперименты и в 1865 на двух заседаниях Брюннского общества естествоиспытателей доложил результаты своей работы. В 1866 в трудах общества вышла его статья «Опыты над растительными гибридами», которая заложила основы генетики как самостоятельной науки. Это редкий в истории знаний случай, когда одна статья знаменует собой рождение новой научной дисциплины. Почему принято так считать?

Работы по гибридизации растений и изучению наследования признаков в потомстве гибридов проводились десятилетия до Менделя в разных странах и селекционерами, и ботаниками. Были замечены и описаны факты доминирования, расщепления и комбинирования признаков, особенно в опытах французского ботаника Ш. Нодена. Даже Дарвин, скрещивая разновидности львиного зева, отличные по структуре цветка, получил во втором поколении соотношение форм, близкое к известному менделевскому расщеплению 3:1, но увидел в этом лишь «капризную игру сил наследственности». Разнообразие взятых в опыты видов и форм растений увеличивало количество высказываний, но уменьшало их обоснованность. Смысл или «душа фактов» (выражение Анри Пуанкаре)   ;) оставались до Менделя туманными.

Совсем иные следствия вытекали из семилетней работы Менделя, по праву составляющей фундамент генетики. Во-первых, он создал научные принципы описания и исследования гибридов и их потомства (какие формы брать в скрещивание, как вести анализ в первом и втором поколении). Мендель разработал и применил алгебраическую систему символов и обозначений признаков, что представляло собой важное концептуальное нововведение.

Во-вторых, Грегор Мендель сформулировал два основных принципа, или закона наследования признаков в ряду поколений, позволяющие делать предсказания. Наконец, Мендель в неявной форме высказал идею дискретности и бинарности наследственных задатков: каждый признак контролируется материнской и отцовской парой задатков (или генов, как их потом стали называть), которые через родительские половые клетки передаются гибридам и никуда не исчезают. Задатки признаков не влияют друг на друга, но расходятся при образовании половых клеток и затем свободно комбинируются у потомков (законы расщепления и комбинирования признаков). Парность задатков, парность хромосом, двойная спираль ДНК — вот логическое следствие и магистральный путь развития генетики 20 века на основе идей Менделя.

Великие открытия часто признаются не сразу


Хотя труды Общества, где была опубликована статья Менделя, поступили в 120 научных библиотек, а Мендель дополнительно разослал 40 оттисков, его работа имела лишь один благосклонный отклик — от К. Негели, профессора ботаники из Мюнхена. Негели сам занимался гибридизацией, ввел термин «модификация» и выдвинул умозрительную теорию наследственности. Однако, он усомнился в том, что выявленные на горохе законы имеет всеобщий характер и посоветовал повторить опыты на других видах. Мендель почтительно согласился с этим. Но его попытка повторить на ястребинке, с которой работал Негели, полученные на горохе результаты оказалась неудачной. Лишь спустя десятилетия стало ясно почему. Семена у ястребинки образуются партеногенетически, без участия полового размножения. Наблюдались и другие исключения из принципов Грегора Менделя, которые нашли истолкование гораздо позднее. В этом частично заключается причина холодного приема его работы. Начиная с 1900, после практически одновременной публикации статей трех ботаников — Х. Де Фриза, К. Корренса и Э. Чермака-Зейзенегга, независимо подтвердивших данные Менделя собственными опытами, произошел мгновенный взрыв признания его работы. 1900 считается годом рождения генетики.

Вокруг парадоксальной судьбы открытия и переоткрытия законов Менделя создан красивый миф о том, что его работа оставалась совсем неизвестной и на нее лишь случайно и независимо, спустя 35 лет, натолкнулись три переоткрывателя. На самом деле, работа Менделя цитировалась около 15 раз в сводке о растительных гибридах 1881, о ней знали ботаники. Более того, как выяснилось при анализе рабочих тетрадей К. Корренса, он еще в 1896 читал статью Менделя и даже сделал ее реферат, но не понял в то время ее глубинного смысла и забыл.

Стиль проведения опытов и изложения результатов в классической статье Менделя делают весьма вероятным предположение, к которому в 1936 пришел английский математический статистик и генетик Р. Э. Фишер: Мендель сначала интуитивно проник в «душу фактов» и затем спланировал серию многолетних опытов так, чтобы озарившая его идея выявилась наилучшим образом. Красота и строгость числовых соотношений форм при расщеплении (3:1 или 9:3:3:1), гармония, в которую удалось уложить хаос фактов в области наследственной изменчивости, возможность делать предсказания — все это внутренне убеждало Менделя во всеобщем характере найденных им на горохе законов. Оставалось убедить научное сообщество. Но эта задача столь же трудна, сколь и само открытие. Ведь знание фактов еще не означает их понимания. Крупное открытие всегда связано с личностным знанием, ощущениями красоты и целостности, основанных на интуитивных и эмоциональных компонентах. Этот внерациональный вид знания передать другим людям трудно, ибо с их стороны нужны усилия и такая же интуиция.

Судьба открытия Менделя — задержка на 35 лет между самим фактом открытия и его признанием в сообществе – не парадокс, а скорее норма в науке. Так, спустя 100 лет после Менделя, уже в период расцвета генетики, подобная же участь непризнания в течение 25 лет постигла открытие Б. Мак-Клинток мобильных генетических элементов. И это несмотря на то, что она, в отличие от Менделя, была ко времени своего открытия высоко авторитетным ученым и членом Национальной Академии наук США.

В 1868 Грегор Мендель был избран настоятелем монастыря и практически отошел от научных занятий. В его архиве сохранились заметки по метеорологии, пчеловодству, лингвистике. На месте монастыря в Брно ныне создан музей Менделя; издается специальный журнал «Folia Mendeliana». (М. Д. Голубовский).
« Последнее редактирование: 12 Ноября 2013, 13:22:25 от Tamara »

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #5 : 12 Ноября 2013, 13:18:24 »
Еще о Грегоре Менделе из другого источника:

Основоположником науки о наследственности — генетики по праву считается австро-венгерский ученый Грегор Мендель. Работа исследователя, «переоткрытая» только в 1900 году, принесла посмертную славу Менделю и послужила началом новой науки, которую несколько позже назвали генетикой. До конца семидесятых годов XX века генетика в основном двигалась по пути, проложенному Менделем, и только когда учёные научились читать последовательность нуклеиновых оснований в молекулах ДНК, наследственность стали изучать не с помощью анализа результатов гибридизации, а опираясь на физико-химические методы.

В начальной школе Грегор Мендель обнаружил выдающиеся математические способности и по настоянию учителей продолжил образование в гимназии небольшого, находящегося поблизости городка Опава. Однако на дальнейшее обучение Менделя денег в семье недоставало. С большим трудом их удалось наскрести на завершение гимназического курса. Выручила младшая сестра Тереза: она пожертвовала скопленным для нее приданым. На эти средства Мендель смог проучиться еще некоторое время на курсах по подготовке в университет. После этого средства семьи иссякли окончательно.

Выход предложил профессор математики Франц. Он посоветовал Менделю вступить в августинский монастырь города Брно. Его возглавлял в то время аббат Кирилл Напп — человек широких взглядов, поощрявший занятия наукой. В 1843 году Мендель поступил в этот монастырь и получил имя Грегор (при рождении ему было дано имя Иоганн). Через четыре года монастырь направил двадцатипятилетнего монаха Менделя учителем в среднюю школу. Затем с 1851 по 1853 год он изучал естественные науки, особенно физику, в Венском университете, после чего стал преподавателем физики и естествознания в реальном училище города Брно.

Его педагогическую деятельность, продолжавшуюся четырнадцать лет, высоко ценили и руководство училища, и ученики. По воспоминаниям последних, он считался одним из любимейших учителей. Последние пятнадцать лет жизни Грегор Мендель был настоятелем монастыря.

С юности Грегор интересовался естествознанием. Будучи скорее любителем, чем профессиональным учёным-биологом, Мендель постоянно экспериментировал с различными растениями и пчёлами. В 1856 году он начал классическую работу по гибридизации и анализу наследования признаков у гороха.

Грегор Мендель трудился в крохотном, менее двух с половиною соток гектара, монастырском садике. Он высевал горох на протяжении восьми лет, манипулируя двумя десятками разновидностей этого растения, различных по окраске цветков и по виду семян. Он проделал десять тысяч опытов. Своим усердием и терпением он приводил в немалое изумление помогавших ему в нужных случаях партнеров — Винкельмейера и Лиленталя, а также садовника Мареша, весьма склонного к выпивке. Если Мендель и давал пояснения своим помощникам, то вряд ли они могли его понять.
Неторопливо текла жизнь в монастыре Святого Томаша. Нетороплив был и Грегор Мендель. Настойчив, наблюдателен и весьма терпелив. Изучая форму семян у растений, полученных в результате скрещиваний, он ради уяснения закономерностей передачи лишь одного признака («гладкие — морщинистые») подверг анализу 7324 горошины. Каждое семя он рассматривал в лупу, сравнивая их форму и делая записи.

С опытов Грегора Менделя начался другой отсчет времени, главной отличительной чертой которого стал опять же введенный Менделем гибридологический анализ наследственности отдельных признаков родителей в потомстве. Трудно сказать, что именно заставило естествоиспытателя обратиться к абстрактному мышлению, отвлечься от голых цифр и многочисленных экспериментов. Но именно оно позволило скромному преподавателю монастырской школы увидеть целостную картину исследования; увидеть ее лишь после того, как пришлось пренебречь десятыми и сотыми долями, обусловленными неизбежными статистическими вариациями. Только тогда буквенно «помеченные» исследователем альтернативные признаки открыли ему нечто сенсационное: определенные типы скрещивания в разном потомстве дают соотношение 3:1, 1:1, или 1:2:1.

Грегор Мендель обратился к работам своих предшественников за подтверждением мелькнувшей у него догадки. Те, кого исследователь почитал за авторитеты, пришли в разное время и каждый по-своему к общему заключению: гены могут обладать доминирующими (подавляющими) или рецессивными (подавляемыми) свойствами. А раз так, делает вывод Мендель, то комбинация неоднородных генов и дает то самое расщепление признаков, что наблюдается в его собственных опытах. И в тех самых соотношениях, что были вычислены с помощью его статистического анализа. «Проверяя алгеброй гармонию» происходящих изменений в полученных поколениях гороха, ученый даже ввел буквенные обозначения, отметив заглавной буквой доминантное, а строчной — рецессивное состояние одного и того же гена.

Г. Мендель доказал, что каждый признак организма определяется наследственными факторами, задатками (впоследствии их назвали генами), передающимися от родителей потомкам с половыми клетками. В результате скрещивания могут появиться новые сочетания наследственных признаков. И частоту появления каждого такого сочетания можно предсказать.

Обобщенно результаты работы ученого выглядят так:

— все гибридные растения первого поколения одинаковы и проявляют признак одного из родителей;
— среди гибридов второго поколения появляются растения как с доминантными, так и с рецессивными признаками в соотношении 3:1;
— два признака в потомстве ведут себя независимо и во втором поколении встречаются во всех возможных сочетаниях;
— необходимо различать признаки и их наследственные задатки (растения, проявляющие доминантные признаки, могут в скрытом виде нести задатки рецессивных);
— объединение мужских и женских гамет случайно в отношении того, задатки каких признаков несут эти гаметы.

В феврале и марте 1865 года в двух докладах на заседаниях провинциального научного кружка, носившего название Общества естествоиспытателей города Брю, один из рядовых его членов, Грегор Мендель, сообщил о результатах своих многолетних исследований, завершенных в 1863 году. Несмотря на то что его доклады были довольно холодно встречены членами кружка, он решился опубликовать свою работу. Она увидела свет в 1866 году в трудах общества под названием «Опыты над растительными гибридами».

Современники не поняли Менделя и не оценили его труд. Для многих ученых опровержение вывода Менделя означало бы ни много ни мало, как утверждение собственной концепции, гласившей, что приобретенный признак можно «втиснуть» в хромосому и обратить в наследуемый. Как только не сокрушали «крамольный» вывод скромного настоятеля монастыря из Брно маститые ученые, каких только эпитетов не придумывали, дабы унизить, высмеять. Но время решило по-своему.

Грегор Мендель не был признан современниками. Слишком уж простой, бесхитростной представилась им схема, в которую без нажима и скрипа укладывались сложные явления, составляющие в представлении человечества основание незыблемой пирамиды эволюции. К тому же в концепции Менделя были и уязвимые места. Так, по крайней мере, представлялось это его оппонентам. И самому исследователю тоже, поскольку он не мог развеять их сомнений. Одной из «виновниц» его неудач была ястребинка.

Ботаник Карл фон Негели, профессор Мюнхенского университета, прочитав работу Менделя, предложил автору проверить обнаруженные им законы на ястребинке. Это маленькое растение было излюбленным объектом Негели. И Мендель согласился. Он потратил много сил на новые опыты. Ястребинка — чрезвычайно неудобное для искусственного скрещивания растение. Очень мелкое. Приходилось напрягать зрение, а оно стало все больше и больше ухудшаться. Потомство, полученное от скрещивания ястребинки, не подчинялось закону, как он считал, правильному для всех. Лишь спустя годы после того, как биологи установили факт иного, не полового размножения ястребинки, возражения профессора Негели, главного оппонента Менделя, были сняты с повестки дня. Но ни Менделя, ни самого Негели уже, увы, не было в живых.

Очень образно о судьбе работы Менделя сказал крупнейший советский генетик академик Б.Л. Астауров, первый президент Всесоюзного общества генетиков и селекционеров имени Николая Ивановича Вавилова: «Судьба классической работы Менделя превратна и не чужда драматизма. Хотя им были обнаружены, ясно показаны и в значительной мере поняты весьма общие закономерности наследственности, биология того времени еще не доросла до осознания их фундаментальности. Сам Грегор Мендель с удивительной проницательностью предвидел общезначимость обнаруженных на горохе закономерностей и получил некоторые доказательства их применимости к некоторым другим растениям (трем видам фасоли, двум видам левкоя, кукурузе и ночной красавице). Однако его настойчивые и утомительные попытки приложить найденные закономерности к скрещиванию многочисленных разновидностей и видов ястребинки не оправдали надежд и потерпели полное фиаско. Насколько счастлив был выбор первого объекта (гороха), настолько же неудачен второй. Только много позднее, уже в нашем веке, стало понятно, что своеобразные картины наследования признаков у ястребинки являются исключением, лишь подтверждающим правило.

Во времена Менделя никто не мог подозревать, что предпринятые им скрещивания разновидностей ястребинки фактически не происходили, так как это растение размножается без опыления и оплодотворения, девственным путем, посредством так называемой апогамии. Неудача кропотливых и напряженных опытов, вызвавших почти полную потерю зрения, свалившиеся на Менделя обременительные обязанности прелата и преклонные годы вынудили его прекратить любимые исследования.

Прошло еще несколько лет, и Грегор Мендель ушел из жизни, не предчувствуя, какие страсти будут бушевать вокруг его имени и какой славой оно, в конце концов, будет покрыто. Да, слава и почет придут к Менделю уже после смерти. Он же покинет жизнь, так и не разгадав тайны ястребинки, не «уложившейся» в выведенные им законы единообразия гибридов первого поколения и расщепления признаков в потомстве».

Менделю было бы значительно легче, знай он о работах другого ученого Адамса, опубликовавшего к тому времени пионерскую работу о наследовании признаков у человека. Но Мендель не был знаком с этой работой. А ведь Адамс на основе эмпирических наблюдений за семьями с наследственными заболеваниями фактически сформулировал понятие наследственных задатков, подметив доминантное и рецессивное наследование признаков у человека. Но ботаники не слышали о работе врача, а тому, вероятно, выпало на долю столько практической лечебной работы, что на абстрактные размышления просто не хватало времени. В общем, так или иначе, но генетики узнали о наблюдениях Адамса, только приступив всерьез к изучению истории генетики человека.

Не повезло и Менделю. Слишком рано великий исследователь сообщил о своих открытиях научному миру. Последний был к этому еще не готов. Лишь в 1900 году, переоткрыв законы Менделя, мир поразился красоте логики эксперимента исследователя и изящной точности его расчетов. И хотя ген продолжал оставаться гипотетической единицей наследственности, сомнения в его материальности окончательно развеялись.

Грегор Мендель был современником Чарлза Дарвина. Но статья брюннского монаха не попалась на глаза автору «Происхождения видов». Остается лишь гадать, как бы оценил Дарвин открытие Менделя, если бы ознакомился с ним. Между тем великий английский натуралист проявлял немалый интерес к гибридизации растений. Скрещивая разные формы львиного зева, он по поводу расщепления гибридов во втором поколении писал: «Почему это так. Бог знает...»

Умер Грегор Мендель 6 января 1884 года, настоятелем того монастыря, где вел свои опыты с горохом. Не замеченный современниками, Мендель, тем не менее, нисколько не поколебался в своей правоте. Он говорил:

«Мое время еще придет». Эти слова начертаны на его памятнике, установленном перед монастырским садиком, где он ставил свои опыты.

Знаменитый физик Эрвин Шрёдингер считал, что применение законов Менделя равнозначно внедрению квантового начала в биологии.

Революционизирующая роль менделизма в биологии становилась все более очевидной. К началу тридцатых годов нашего столетия генетика и лежащие в ее основе законы Менделя стали признанным фундаментом современного дарвинизма. Менделизм сделался теоретической основой для выведения новых высокоурожайных сортов культурных растений, более продуктивных пород домашнего скота, полезных видов микроорганизмов. Менделизм дал толчок развитию медицинской генетики...

В августинском монастыре на окраине Брно поставлена мемориальная доска, а рядом с палисадником воздвигнут прекрасный мраморный памятник Грегору Менделю. Комнаты бывшего монастыря, выходящие окнами в палисадник, где Мендель вел свои опыты, превращены теперь в музей его имени. Здесь собраны рукописи (к сожалению, часть их погибла во время войны), документы, рисунки и портреты, относящиеся к жизни ученого, принадлежавшие ему книги с его пометками на полях, микроскоп и другие инструменты, которыми он пользовался, а также изданные в разных странах книги, посвященные ему и его открытию. (Самин Д. К. 100 великих ученых. - М.: Вече, 2000).

Оффлайн Ната

  • Модератор
  • V.I.P.
  • *****
  • Сообщений: 5173
  • Наташа Московская область Север
Re: Советы Менделя... или все о генетике
« Ответ #6 : 12 Ноября 2013, 14:25:28 »
Тамара, спасибо за информацию [give_rose]

Оффлайн Serg

  • Не бери от жизни всё - не унесёшь!
  • Глобальный модератор
  • V.I.P.
  • *****
  • Сообщений: 4235
  • Московская губерния, направление - юг!
    • Куркин Двор
Re: Советы Менделя... или все о генетике
« Ответ #7 : 12 Ноября 2013, 16:11:52 »
Тома, как всегда... нет слов! И где ты только все ЭТО находишь [mocking] Читал с огромным интересом, спасибо [yeas]
Если куры поднимают Вас на смех, расскажите им, из чего делают котлеты по-киевски.

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #8 : 12 Ноября 2013, 16:22:33 »
Да ладно.., Вам!   8)

Оффлайн LAV

  • Старожил
  • ****
  • Сообщений: 675
  • Александр
Re: Советы Менделя... или все о генетике
« Ответ #9 : 13 Ноября 2013, 09:58:05 »
Ну давайте и Вавилова сюда. А как этой кухней заниматься,  А. Александрова....  ;)

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #10 : 13 Ноября 2013, 13:05:06 »
Г. Мендель, только после смерти стал известным. А. Александров жив! Многие лета-многие лета!
Продолжим... Ученье свет!
« Последнее редактирование: 13 Ноября 2013, 13:17:19 от Tamara »

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #11 : 13 Ноября 2013, 13:09:42 »
                     Отшельник оказывается совсем не отшельником!

В августе 1965 года в чехословацкий город Брно съехались со всего света ученые. Русские и американцы, немцы и бельгийцы, индусы и болгары, представители молодых стран Африки и государств Латинской Америки, они говорили каждый на своем языке, однако был у них всех и общий язык —1:1, 3:1, 9:3, 3:1, — язык генетических формул. Этим формулам, открытию чешского ученого Грегора Менделя, в тот год исполнялось сто лет.

Какое открытие он сделал?

Писатели-фантасты часто описывают будущее, проникновение в него человечества. Для Менделя будущее не было фантастикой. Каждодневная работа вела в него, полное непонимание окружающих не помешало Менделю опередить свой девятнадцатый век.

Но чем же знаменит Мендель?

В начале прошлого века, в 1822 году, в Австрийской Моравии, в деревушке Ханцендорф, в крестьянской семье родился мальчик. Он был вторым ребенком в семье. При рождении его назвали Иоганном, фамилия отца была Мендель.

Жилось нелегко, ребенка не баловали. С детства Иоганн привык к крестьянскому труду и полюбил его, в особенности садоводство и пчеловодство. Как пригодились ему в дальнейшем навыки, приобретенные в детстве!

Выдающиеся способности обнаружились у мальчика рано. Менделю было одиннадцать лет, когда его перевели из деревенской школы в четырехклассное училище ближайшего городка. Он и там сразу проявил себя и уже через год оказался в гимназии, в городе Опаве.

Платить за учебу и содержать сына родителям было трудно. А тут еще обрушилось на семью несчастье: отец тяжело пострадал — ему на грудь упало бревно. В 1840 году Иоганн окончил гимназию и параллельно — школу кандидатов в учителя. Как пишет он сам, это обеспечило ему скромное существование.

Несмотря на трудности, Мендель продолжает учебу. Теперь уже в философских классах в городе Оломеуц. Тут учат не только философии, но и математике, физике — предметам, без которых Мендель, биолог в душе, не мыслил дальнейшей жизни. Биология и математика? В наши дни это сочетание неразрывно, но в XIX веке казалось нелепым. Именно Мендель был первым, кто проложил в биологии широкую колею для математических методов.

Он продолжает учиться, но жизнь тяжела, и вот настают дни, когда, по собственному признанию Менделя, «дальше переносить подобное напряжение уже не под силу». И тогда в его жизни наступает переломный момент: Мендель становится монахом. Он отнюдь не скрывает причин, толкнувших его на этот шаг. В автобиографии пишет: «Оказался вынужденным занять положение, освобождающее от забот о пропитании». Не правда ли, откровенно? И при этом ни слова о религии, боге. Неодолимая тяга к науке, стремление к знаниям, а вовсе не приверженность к религиозной доктрине привели Менделя в монастырь. Ему исполнился двадцать один год. Постригавшиеся в монахи в знак отрешения от мира принимали новое имя. Иоганн стал Грегором.

Однако что-то не сиделось ему в монастыре. Вот перечень заграничных поездок Менделя: он побывал во Франции, в Англии, Риме, Гамбурге, Киле, Берлине, Венеции. Много ездил он и внутри страны, а в Вене, где учился в университете, жил годами. Лишь одна из поездок — в Рим, где представлялся он папе, — была по монастырским делам, а все остальные — на научные съезды и выставки.

А еще флористические экскурсии. Мендель их совершал постоянно. Бродил в окрестностях Брно, часто весьма далеких, искал редкие и измененные растения. Нет, он не собирал гербарий. Свои находки нес в монастырь, высаживал в маленьком садике, наблюдал за их ростом, за тем, как наследуют они свои особенности. Конечно, это отрывало его от монастырских дел, но, очевидно, именно к этому он и стремился.

Невольно напрашивается вопрос: а как же монастырское начальство? Почему разрешало оно Менделю экскурсии и поездки? Ответить на это не так уж сложно, нужно только учесть историческую обстановку.

Девятнадцатое столетие подвело черту под средневековьем. От безраздельного влияния религии на все стороны жизни остались только воспоминания. Однако католичество все еще сила немалая, но тому, кто недавно был всемогущ, трудно смириться с ограничениями. И от былой отгороженности монастырей от мирской жизни приходится отказаться. Монастыри включаются в активную борьбу за влияние на массы. В школы, больницы, даже в правительства и науку направляются эмиссары в рясах: считается, что тем самым они несут в массы «божье» слово. И Мендель в этой обстановке использует любую возможность для научной работы.
Карта путешествий Менделя.

В науке не было человека более скромного, чем Мендель: никогда он не рекламировал свои работы, свои достижения, никогда ни о ком из ученых не сказал худого слова. Однако в жизни, в обстоятельствах, с наукой не связанных, Мендель был волевым, энергичным, деятельным. Он умел постоять за себя, об этом свидетельств вполне достаточно. И в то же время не сыщешь ни одного, которое бы говорило о... религиозности Менделя. Это не значит, что он был безбожником. Просто не было у него потребности обращаться к богу ни в научной работе, ни в спорах, ни в письмах — обходился без него, объясняя все причинами материальными. Эмиссар в рясе был эмиссаром науки.

О том, как он выглядел, свидетельствует современник: «Еще теперь я его вижу перед собой, как он идет по Булочной улице, спускаясь к монастырю: среднего роста и широкоплечий, хороню настроенный, с крупной головой и высоким лбом и золотыми очками на благожелательных, но проницательных голубых глазах. Почти всегда он носил штатское платье, цилиндр на голове, длинный, черный, обычно чересчур широкий сюртук и короткие брюки, заправленные в высокие, жесткие сапоги». Чей это облик? Скорее, учителя тех лет, горожанина или крестьянина, быть может ученого, но уж никак не монаха.

Был период, когда его сделали священником. Совсем недолгий период. Утешать страждущих, снаряжать в последний путь умирающих. Не очень-то это нравилось Менделю. И он делает все, чтобы освободиться от неприятных обязанностей.

Иное дело учительство. Мендель преподавал в городской школе, не имея диплома учителя, и преподавал хорошо. Его бывшие ученики с теплотой вспоминают о нем — сердечном, благожелательном, умном, увлеченном своим предметом.

Интересно, что Мендель дважды сдавал экзамен на звание учителя и... дважды проваливался! А ведь он был образованнейшим человеком. Нечего говорить о биологии, классиком которой Мендель вскоре стал, он был высокоодаренный математик, очень любил физику и отлично знал ее.

Сохранились сведения об одном из его ответов — речь шла о происхождении Земли. Мендель говорил о теории Канта — Лапласа, об образовании небесных тел из туманностей. Ответ был совершенно правильным с точки зрения науки тех лет. Но он не соответствовал религиозным догмам о божественном акте творения. Не поэтому ли Мендель и получал неудовлетворительные оценки?

Провалы на экзаменах не мешали его преподавательской деятельности. В городском училище Брно Менделя-учителя очень ценили. И он преподавал, не имея диплома.


Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #12 : 13 Ноября 2013, 13:13:39 »
                           «Период «затворничества». Правило доминирования

В жизни Менделя были годы, когда он и впрямь превратился в затворника. Но не перед иконами склонял он колена, а... перед грядками с горохом. С утра и до позднего вечера трудился он в маленьком монастырском садике (35 метров длины и 7 метров ширины). Здесь с 1854 по 1863 год провел Мендель свои классические опыты, результаты которых не устарели и по сей день.

Этим опытам предшествовала длительная подготовка.

До нас не дошли ни перечень прочитанных Менделем книг, ни записи его; однако по письмам к ботанику Негели нетрудно заключить: перечитал он всё, что писалось до него по вопросам наследственности.

А до Менделя в вопросах наследственности не было ясности. Каких только не высказывалось гипотез! И в общем-то все они были несостоятельными. Только лишь двое — Огюстон Сажрэ и Шарль Ноден — были близки к открытию законов, по праву называемых менделевскими. Можно даже сказать, что этим ученым оставалось сделать один только шаг, но, чтобы его сделать, надо было быть Менделем!

Мы не будем здесь рассматривать взгляды ученых, предшественников Менделя, — нет в этом нужды. Однако о некоторых представлениях, существовавших в ту пору в среде селекционеров, сказать нужно хотя бы потому, что и ныне они кое-где бытуют. Так, рассматривая гибриды, говорили о доли «крови» родителей: полукровки, четвертькровки и т. д. Между тем первая и очень важная заслуга Менделя состоит именно в том, что он понял: такие расчеты не ведут ни к чему. Напротив, они заслоняют от исследователя картину наследования. Организм — единое целое. Это верно. Но ведь и целое состоит из частей! Эти части неразрывно связаны между собой, но тем не менее они существуют раздельно. Недаром говорят: глаза отцовские, а волосы как у матери!

Мендель понял: организм слагается из признаков. Нет, это не мозаика признаков, не простая сумма, потому что ни глаза, ни волосы отдельно от организма существовать не могут. И все же наследуются именно признаки: карие или голубые глаза, курчавость или прямоволосость.

Это было первое открытие Менделя, сделанное им еще до опытов с горохами. Однако это не теоретическое открытие. Мендель в своей монастырской келье занимался скрещиваниями мышей разных окрасок. Результаты опытов он не публиковал, церковники могли бы их счесть греховными.

Свои основные опыты — с горохом — Мендель очень хорошо продумал. Четкая постановка опытов, совершенно новые для тех лет методы удивляют даже нас, людей XX века.

Опыт должен быть чист. Мендель понимает это и тратит два года на то, чтобы проверить выбранные для эксперимента горохи: как они себя поведут, достаточно ли четко будут наследовать свои признаки? А маленькие жучки, ползающие по растениям и могущие ненароком перенести пыльцу или попортить горошины? Сколько хлопот они доставили Менделю! Нелегко было их победить, и все же своего он добился: ни один из его опытов не был испорчен. Он изучил десять тысяч растений и лишь в нескольких случаях обнаружил случайную примесь чужой пыльцы!

Мендель выбрал семь пар горохов. Партнеры каждой из пар отличались друг от друга лишь по одному, четко выраженному признаку:

семена гладкие или морщинистые,

семядоли желтые или зеленые,

семенная кожура белая или серая,

бобы гладкие или с перехватами,

зрелые бобы зеленые или желтые,

цветы пазушные или верхушечные,

оси короткие или длинные.

Как ужо было сказано, Мендель проверял растения в течение двух лет (1854—1855) и всегда они давали одинаковое потомство.

Выбранные горохи скрещивались попарно. Взяв кисточкой пыльцу с одного растения, Мендель переносил ее на пестик другого. Всего таким образом было проведено 287 искусственных оплодотворений: исследователь понимал, что для надежных выводов нужен большой материал.

Но вот наконец пришло время, когда стали ясны результаты опытов. Они были предельно четкими и, с точки зрения представлений, существовавших до Менделя, удивительными.

Гибриды первого поколения — полукровки. Какими же они оказались? Вовсе не промежуточными.

В каждом из скрещиваний проявился только один из признаков.

Когда у одного из родителей семена были гладкими, а у другого морщинистыми, все сто процентов потомков имели гладкие семена. Точно так же при скрещивании растений с зелеными семядолями; с теми, у которых семядоли были желтыми, потомство имело желтые семена.

И так по всем скрещиваниям. Один из признаков господствовал, подавлял другой признак.

Такой господствующий, подавляющий признак Мендель назвал доминантным; другой же, подавляемый признак, носит название рецессивного. Рецессивные признаки в первом поколении не проявлялись ни у одного из многих сотен гибридов.

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #13 : 14 Ноября 2013, 01:15:53 »
            Правило и исключения. Закон единообразия первого поколения

«Но, быть может, так бывает лишь у горохов?» — подумает пытливый читатель. И тут же вспомнит, что совсем недавно противники современной генетики называли законы Менделя «гороховыми».

Пытливый читатель прав. Ничто нельзя принимать на веру. Проверять, проверять, проверять — это главное свойство, которое должно быть присуще исследователю. Не верить единичному результату! Без этого не может существовать ни одна наука.

В угоду такому читателю обратимся к иным, «негороховым» примерам.

Тюльпаны. Что получится, если белый цветок опылить пыльцой красного? Каковы будут цветы у гибридов? Розовые? Нет. Все они окажутся красными. Красный цвет у тюльпанов — доминант, белый — рецессив.

Но тюльпаны — растения. А как обстоит дело с животными? Сейчас посмотрим. Начнем с самых простых позвоночных — с рыб.

У диких панцирных сомиков тело серое, а по нему правильным орнаментом лежат коричнево-черные пятна. Но встречаются сомики иные — розовые альбиносы. Что получится, если серого коврового скрестить с розовым? Ковровая окраска будет доминировать, а альбинизм окажется рецессивом. Все потомство в первом поколении будет ковровым.

Подобные примеры можно было бы подобрать для любого класса животных, но мы перепрыгнем через несколько ступеней систематической лестницы живых существ и обратимся к птицам. На цветной вклейке нарисованы павлины. Пава обычная, пестрая, а самец — белый. Каким будет потомство? В первом поколении оно все окажется пестрым, дикого типа. Он — доминант, белая окраска здесь рецессив.

А вот еще любопытная фотография: жираф-альбинос в стаде обычных жирафов. Какое будет потомство от пестрого жирафа и альбиноса? Обязательно пестрое (конечно, если пестрый жираф негибриден).


И наконец, человек. Здесь есть тоже рецессивные и доминантные признаки. Темные глаза (карие, черные) доминируют, например, над голубыми.

Что скажет теперь пытливый читатель? Быть может, следующее: а нельзя ли проверить самому?

Пожалуйста! У тебя есть аквариум? Если нет, возьми трехлитровую банку.

В аквариумах водятся улитки — катушки. Есть специальная аквариумная порода: катушка красная. Это альбинос, сквозь прозрачные покровы которого просвечивает алая кровь. А в природных водоемах — прудах, медленных речках — тьма-тьмущая катушек обычных, коричневых или черных. Налей в банку воды, дай ей отстояться, брось туда несколько веточек водных растений и поставь на свет. Примерно через неделю можно пустить туда крупных катушек: красную и черную. Изредка бросай на поверхность маленький кусочек морковки, ею катушки будут питаться. При температуре 20—30° улитки уже через несколько дней отложат икру. А через 3—5 недель из икры вылупятся катушата. Они подрастут, и ты увидишь: все будут черные, ни одной красной. Черный цвет здесь доминант, красный — рецессив.

Число примеров я мог бы значительно увеличить, мог бы заполнить ими всю эту книжку. Но вряд ли есть в этом нужда. Уже сейчас можно сформулировать правило доминирования: при скрещивании наследственно чистых форм в первом поколении проявляются доминантные, господствующие признаки, а признаки рецессивные не проявляются.

Из правила есть исключения. Одно из них — наследование окраски цветков у растения мирабилис (ночная красавица). У этого растения имеются две расы: с красными и белыми цветками. Если их скрестить между собой, потомство получится не красным, не белым, а промежуточным — розовым.

Примеров промежуточного доминирования можно привести немало. Обратимся к аквариумным рыбкам. Если выбрать ярко-красного меченосца и скрестить его с серым, потомство получится красным — казалось бы, красный цвет доминирует. Но, присмотревшись к потомкам и сравнив их с родителями, нельзя не заметить, что у потомков красная окраска иная — много бледнее. Здесь имеет место доминирование не совсем промежуточное, но неполное.

Что же тогда получается с правилом Менделя?

«Неправильное правило! — скажет недоверчивый читатель. — Столько же подтверждений, сколько и исключений!»

Да, это так! Но тем не менее это нисколько не умаляет значение открытия Менделя. Суть этого открытия не в явлении доминирования, а в том, что в первом поколении либо проявляются признаки одного из родителей, либо же первое поколение промежуточно, но никогда (если исходный материал наследственно чист!) не возникает разнообразия. Не бывает так, что один потомок похож на отца, другой — на мать.

Поэтому теперь, когда стало известно множество исключений из правила доминирования, первый закон Менделя генетики называют законом единообразия первого поколения гибридов.

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #14 : 14 Ноября 2013, 13:46:21 »
     Где рецессивы?

А куда же делись рецессивные признаки? Пропали, исчезли? Не волнуйтесь, сейчас мы их найдем, они лишь до поры до времени «спрятались».

С растений первого поколения Мендель собрал семена и на следующий год высеял их, чтобы получить второе поколение, уже от скрещивания гибридов между собой. Вот тут-то и появились рецессивные признаки!

Рассмотрим для начала два опыта Менделя. Рассмотрим подробно, с цифрами, и недоверчивый читатель сможет сам все просчитать.

Б одном из опытов Мендель скрещивал растения с круглыми и угловатыми (морщинистыми) семенами. Круглые семена доминировали, и, значит, для получения второго поколения скрещивались между собой гибриды из первого, по виду круглосеменные.
№    Опыт 1    Опыт 2    Форма семян    Окраска семядолей    Круглая    Угловатая    Желтая    Зеленая
растений    
1    45    12    25    11
2    27    8    32    7
3    24    7    14    5
4    19    10    70    27
5    32    11    24    13
6    26    6    20    6
7    88    24    32    13
8    22    10    44    9
9    28    6    50    14
10    25    7    44    18
Всего по 10 растениям    
       336    101    355    123 



В другом опыте исходные формы имели зеленые и желтые семядоли; желтые доминировали. Затем гибриды скрещивались между собой. Во втором поколении преобладали доминантные формы, но обязательно были и рецессивные, всегда в меньшем числе. Очень важно определить, в каком именно, поэтому приведу табличку из работы Менделя.

А теперь пусть читатель подумает, как опровергнуть Менделя. Но опровергнуть Менделя трудно. Его выводы основываются на большом экспериментальном материале. Так, в опыте первом было 253 растения, а семян от них получено 7324. Из них круглыми оказалось 5474 семени, а угловатыми 1850! Тут уже можно прикинуть долю рецессивов. Разделив первое число на второе (5474 : 1850), получим 2,96 :1.



Законы наследования одинаковы для всего живого.

А во втором опыте 258 растений дали 8023 семени — 6022 желтых и 2001 зеленое. И соотношение 3,01 : 1.

Посмотрим соотношения доминантов и рецессивов в других опытах, всего их было семь — Мендель отобрал для скрещиваний семь пар горохов. Вот они, эти соотношения: 3,15 : 1; 2,95 : 1; 2,82 : 1; 3,14 : 1; 2,84 : 1.

А всего в опыте было 19 960 потомков второго поколения. Почти двадцать тысяч!

Ну, а теперь выводы. На основе цифр Менделя вы уже сами можете заключить, что закономерное соотношение доминантных и рецессивных форм во втором поколении гибридов равно 3:1.

Три к одному — это нужно запомнить!
« Последнее редактирование: 14 Ноября 2013, 13:58:46 от Tamara »

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #15 : 14 Ноября 2013, 16:47:26 »
        Ну, а как у ночной красавицы? И почему именно три к одному?

Напомню: ночная красавица оказалась цветком «эксцентричным», не пожелала следовать правилу доминирования. Скрещивали растения с красными и белыми цветами, а гибриды первого поколения получились сплошь розовоцветными. Что будет в этом случае во втором поколении? Уж конечно, не 3 : 1.



Наследование цвета у ночной красавицы.

Под цветками даны гены; справа изображены хромосомы.

Ход скрещивания у ночной красавицы изображен на схеме. Буквой Р (Р латинское) здесь обозначены родители, F1 — первое поколение гибридов, F2 — второе поколение, × — знак скрещивания.

Из схемы мы видим, что первое поколение все одинаковое, розовоцветное, а во втором — потомки трех типов: с красными цветами (как один из родителей), с розовыми (как гибриды первого поколения) и с белыми (как второй из родителей). А численное соотношение 1:2:1. Легко понять, что при доминировании соотношение у ночной красавицы было бы, как у гороха, 3: 1 (когда ниже мы познакомимся с формулами, это станет яснее).

Опыт, который я описал, надеюсь, убедил самых недоверчивых читателей в том, что Мендель был превосходным экспериментатором. Но он оказался и замечательным теоретиком.

Прежде всего Мендель понимал, что растения не могут передать свои признаки потомкам иначе, как через половые клетки. Спермий и яйцеклетка у животных, пыльцевое зерно и семяпочка у растений — вот передаточные этапы. Попутно он сделал еще несколько открытий. Так, например, в точном опыте Мендель доказал, что для опыления семяпочки достаточно одного-единственного пыльцевого зерна. Если бы, кроме этого, он больше ничего не дал науке, то и тогда имя его сохранилось бы в биологии.

Не зная ничего о материальных носителях наследственности, Мендель тем не менее был уверен в их существовании. Каждый из признаков, передающийся потомкам, имеет в клетке свой собственный наследственный задаток или задатки — это главная из его гипотез, в дальнейшем полностью подтвердившаяся.

А вот теперь перейдем к формулам, открытым Менделем. Не нужно пугаться: как все по-настоящему гениальное, они просты. Вернемся к скрещиванию Горохов с гладкими и угловатыми семенами, но только признаки эти (а значит, и наследственные задатки) обозначим, как делал это и Мендель, латинскими буквами. Гладкие семена — доминантный признак — обозначим А. Угловатые семена — рецессии — пусть будут а.

Мы могли бы записать скрещивание вот так:

Р: А × а

Однако у родителей тоже были родители, у каждого по два, и от каждого они получили наследственные задатки (Мендель брал проверенные семена, не гибридные). Это мы выразим, изменив запись таким образом:

Р: АА × аа

Запись означает, что у того из родителей, который имел гладкие семена, в свою очередь были два гладкосеменных родителя, и, наоборот, угловатосеменное растение происходило от двух растений с угловатыми семенами.

Каким будет первое поколение (F1)?

Каждое из растений получит по одному наследственному задатку от каждого из родителей (от одного А, от другого а).

F1 (первое поколение) состоит из гибридов: Аа, Аа. Правда, по внешности все они гладкосеменные, однако по происхождению резко отличаются от гладкосеменных растений из родительского поколения.

Чтобы получить второе поколение, скрещивают растения F1 между собой:

F1 : Аа × Аа

Тут возникает сложность, которую мы легко разъясним, потому что знаем больше того, что знал Мендель.

Ему же пришлось создать гениальнейшую из всех его гипотез: гипотезу чистоты гамет.

Перед скрещиванием растение образует половые клетки — гаметы. В опытах Менделя наследственные задатки не изменялись, не смешивались, не исчезали — в неизменном виде передавались они из поколения в поколение. Именно это позволило Менделю предположить, что гибридными могут быть только организмы. Гаметы же (половые клетки) всегда чисты, т. е. несут только один наследственный задаток из пары, в нашем случае или А, или а. Правильность этой гипотезы затем подтверждалась многократно, а теперь уже есть и прямые доказательства. Но вернемся к нашему скрещиванию и запишем, какие получатся гаметы:



Каждое из растений первого поколения образует гаметы двух типов: А и а. Тех и других образуется равное число, ибо, разделившись, материнская клетка в одну из дочерних отдает наследственный задаток А, в другую а.

Ну, а теперь нам остается лишь проследить, как будут комбинироваться гаметы при образовании второго поколения. Предположим, что имеется равное число шансов для встречи каждой из гамет одного родителя с любой гаметой другого.



Мы получаем соотношения АА : 2Аа : аа.

А — доминант, значит, растения с формулой Аа будут гладкосеменными.

Следовательно, по внешнему виду растения распадутся на две группы и составят соотношения 3 : 1 (на три гладких семени в урожае должно приходиться одно угловатое).

Однако мы сделали допущение, весьма произвольное: предположили, что каждая из гамет одного из родителей имеет равные шансы встретиться с любой гаметой другого. Так ли это? И получится ли при этом 3 : 1? В том, что это действительно так, убеждают тысячи опытов, подобных опыту Менделя. А чтобы ответить на второй вопрос, я советую (и особенно моим друзьям, пытливым читателям) проделать прямо сейчас, не сходя с места, один простой опыт.



Лотерея с черными и белыми шарами.

Нарежьте из бумаги сто одинаковых квадратиков. На пятидесяти напишите А, а на пятидесяти других — а. Затем каждый из квадратиков скатайте в трубочку и все их, тщательно перемешав, опустите куда-либо, хотя бы в шапку. Это будут наши «гаметы». Далее, не глядя, их нужно вынимать попарно и каждый раз отмечать, какой «потомок» получится: АА, Аа или аа. «Гамет» у нас мало — всего 100, поэтому, вынув, бумажные квадратики нужно вновь свертывать и бросать обратно. Чем недоверчивей читатель, тем больше придется ему поработать. Однако ручаюсь, что при достаточно большом числе «потомков» получится соотношение, близкое к 3 : 1, т. е. в нашем опыте «гаметы» ведут себя так же, как и в реальных скрещиваниях: и там и здесь подчиняются закону больших чисел.

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #16 : 14 Ноября 2013, 16:53:49 »
        Одинаковые, но разные

Горох с пурпурными цветами скрестили с белоцветным горохом. Получились гибриды с пурпурными цветами — сказалось правило доминирования. Попробуем сравнить два внешне одинаковых растения — из родительского и первого поколения. Они друг на друга похожи как две капли воды. Но как быть с формулами? Формулы разные!

Чтобы убедиться в правильности менделевской алгебры жизни, поставим так называемые возвратные, или анализирующие, скрещивания.

Но сначала познакомимся с некоторыми терминами, их необходимо запомнить. Прежде всего, в отличие от половых клеток гамет, получающийся в результате их слияния организм в генетике называют зиготой. Если формула гаметы в нашем случае либо А, либо а, то зиготы возможны, как мы уже видели выше, трех типов: АА, Аа и аа.

Организмы (или зиготы) с формулами АА и аа генетики называют гомозиготами, т. е. зиготами, обладающими двумя одинаковыми наследственными задатками.

«Гибридный» организм с формулой Аа носит название гетерозиготы (зиготы с разными наследственными задатками).

Как уже отмечалось, гомозиготы АА внешне не отличимы от гетерозиготы Аа. Иначе говоря, внешность организма обманчива, далеко не всегда дает нам исчерпывающее представление о его наследственной структуре. В связи с этим в генетике введено различие между фенотипом и генотипом. Фенотип — это внешнее выражение наследственности, попросту говоря, внешний вид, внешность организма. Если формула организма аа, т. е. он гомозиготен по рецессивному наследственному задатку, фенотип полностью соответствует генотипу: рецессивный признак ничем здесь не заслоняется, он сразу виден. Но если формула АА или Аа, попробуй тут по внешнему виду определить генотип! Не получается: А — доминантный фактор, и не различишь, какой перед тобой организм — АА или Аа. Вот тогда-то и применяют возвратные, или анализирующие, скрещивания: организм, несущий доминантный признак, скрещивают с гомозиготным по рецессиву.

                                                         

                                                          Возвратное скрещивание у горохов.

Вернемся к нашим горохам. Растения с пурпурными цветками из родительского или первого гибридного поколения не отличимы одно от другого: у них одинаковый фенотип. Скрестим их с двойным рецессивом аа:
Р : АА × аа    Р : Аа × аа
F1 : Аа, Аа    F1 : Аа, аа
Все растения с пурпурными цветками.    Половина растении с пурпурными, половина с белыми цветками.

Вот мы и разобрались, провели, как говорят, генетический анализ. Одинаковые по фенотипу растения оказались разными по генотипу: первое гомозиготным, а второе гетерозиготным по доминантному наследственному задатку А.

Возвратное скрещивание очень часто имеет большое практическое значение в селекции. Приведу пример из практики; речь пойдет о скрещивании, которое вы можете поставить в школьном биологическом кружке, в Доме пионеров или просто дома — всюду, где есть аквариумы.

С раннего детства увлекся я жизнью подводного мира, и как-то уж так случилось, что интересовал меня не столько образ жизни рыб, сколько селекция — выведение новых пород. Нужно сказать, что до войны в Москве было много меньше видов и пород аквариумных рыб, чем сейчас. Гуппи, например, были только серые, очень невзрачные. Поэтому легко понять мою радость, когда среди бесчисленных мальков этих рыб я обнаружил одного золотого! Конечно, я его тщательно вырастил. Оказалось, что это самец, и я подобрал для него молоденькую, выращенную отдельно от других гуппи, самку. Она была серой, и все мальки, которых она родила, тоже оказались серыми. Я понял, что золотая окраска — рецессивный признак. Можно было бы скрещивать гетерозиготных по этому признаку серых рыб между собой. Но тогда получилось бы расщепление 3:1. Только четверть всех мальков оказались бы золотыми. Между тем мой золотой самец сохранялся, и я поставил возвратное скрещивание. Самки — гетерозиготы, оплодотворенные этим самцом, — дали в потомстве соотношение 1 : 1, т. е. 50% серых и 50% золотых мальков.

Очень часто точно так же поступают селекционеры, работающие с сельскохозяйственными объектами.

                                                       

                                                         Возвратное скрещивание у гуппи.

Оффлайн вечеслав

  • Старожил
  • ****
  • Сообщений: 804
  • Вечеслав
Re: Советы Менделя... или все о генетике
« Ответ #17 : 14 Ноября 2013, 16:56:53 »
Тамара [good]пять.....по пятибальной шкале,доступно,понятно.

Оффлайн Serg

  • Не бери от жизни всё - не унесёшь!
  • Глобальный модератор
  • V.I.P.
  • *****
  • Сообщений: 4235
  • Московская губерния, направление - юг!
    • Куркин Двор
Re: Советы Менделя... или все о генетике
« Ответ #18 : 14 Ноября 2013, 17:08:16 »
Теперь можно начинать пробовать выводить какую-нить свою породу, типа... Сергунина Толстопопая ::)
Если куры поднимают Вас на смех, расскажите им, из чего делают котлеты по-киевски.

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #19 : 14 Ноября 2013, 17:27:03 »
Теперь можно начинать пробовать выводить какую-нить свою породу, типа... Сергунина Толстопопая ::)

Не спеши! :D Осталось самую малость...  ;)  [secret]
2)закон расщепления гибридов второго поколения;
3)закон независимого комбинирования признаков (точнее, закон независимого расщепления). ;D

Стишок...  [mocking]

Генетика

Я иду и всех ненавижу,
Потому что я - рыжий. Рыжий!
Перекраситься - нету денег.
А постричься - да просто лень мне!
Ну, за что же меня заделал
Рыжим - папа. Ведь сам он - чёрный.
А у мамы весь волос - белый!
Ведь в блондинках была девчонкой!!!
"Не грусти ты. Не убивайся.
Хочешь, влезем с тобой на крышу?" –
Говорил мне сосед - дядя Зайцев;
Как ни странно, но тоже - рыжий...
« Последнее редактирование: 14 Ноября 2013, 17:32:45 от Tamara »

Оффлайн Ната

  • Модератор
  • V.I.P.
  • *****
  • Сообщений: 5173
  • Наташа Московская область Север
Re: Советы Менделя... или все о генетике
« Ответ #20 : 14 Ноября 2013, 19:20:20 »
Тамара  [clapping]

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #21 : 14 Ноября 2013, 22:22:01 »
Ребята, спасибо, конечно, но мне неудобно получать Ваши благодарности  [blush], т.к. это материал не мой, а фамилия автора не указана. Так что, спасибо неизвестному Автору, кто постарался для нас и изложил материал в доступной и интересной форме! :)
И, вообще, это была Ваша инициатива-создать эту тему. Так что Вам спасибо! [yeas]

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #22 : 14 Ноября 2013, 22:25:26 »
    Доля папы и доля мамы. Реципрокные скрещивания

Это один из вопросов, которые Мендель решал между делом. Сам он написал об этом всего лишь одну фразу: «...во всех опытах производилось взаимное скрещивание таким образом, что те из каждой пары видов, которые при одних оплодотворениях служили семенными растениями, в других употреблялись как пыльцевые».

В обоих случаях результаты получались одинаковые. Из опытов следовало, что оба пола в равной мере отвечают за передачу признаков по наследству. Мендель не испытывал в этом ни малейших сомнений. Однако после него сомневающихся появилось немало, было создано даже целое учение, утверждавшее, что мать, материнская наследственность, играет преобладающую роль. А если так, не вредно усомниться и нам, обратиться к иным, чем горох, объектам.



Реципрокное скрещивание у меченосцев.

На схемах показано скрещивание у меченосцев. В правой схеме родителями были окрашенная самка и обычный серый самец, в левой — наоборот. Такие скрещивания, где носитель того или иного признака выступает то в качестве матери, то в качестве отца, называются реципрокными. Из схем видно, что расщепление в обоих случаях идет одинаково, отец и мать в равной мере передают свои признаки потомкам.

Я специально взял меченосцев — аквариумных рыб, простых по разведению и содержанию. Читатели, если пожелают, смогут поставить эти скрещивания самостоятельно. Оговорю лишь одну техническую сложность. У меченосцев, как и у всех других аквариумных живородящих рыб, одного оплодотворения хватает на несколько нерестов: сперма хранится в организме самки. Поэтому самок для всех типов генетических скрещиваний у всех живородящих рыб нужно специально выращивать в отдельных аквариумах, где нет самцов.

Опытов такого рода ставилось множество на самых различных объектах: микроорганизмах, растениях, животных. Но сомневающихся убедить трудно. Всегда остаются вопросы: а вдруг все-таки... И действительно, исключения есть. Так, например, при отдаленном скрещивании между ослом и лошадью, в зависимости от того, какой из видов взят самкой, получается либо мул, либо лошак. Они отличаются друг от друга довольно резко. Однако и здесь нельзя говорить о преобладании материнской наследственности. Ведь при реципрокных скрещиваниях меняются не только матери, но и отцы. Все это вполне объяснимо с позиций современной генетики. Когда мы познакомимся с хромосомной теорией, это станет понятным.

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #23 : 14 Ноября 2013, 22:30:40 »
                    Закон расщепления

Теперь настало время сформулировать второй закон Менделя — закон расщепления. Суть его сводится к следующему: второе поколение, полученное от скрещивания гибридов между собой, распадается на доминантные и рецессивные формы.

                             

                                    Расщепление у гуппи.

                                                     

                                          Катушка-альбинос среди нормальных улиток.

Формула расщепления АА: 2Аа: аа. В случае промежуточного доминирования получается расщепление 1:2:1, в случаях доминирования полного — 3:1.

В скрещивании, которое мы рассмотрели, участвует только одна пара признаков.
Такое скрещивание называют моногибридным.
« Последнее редактирование: 14 Ноября 2013, 22:33:44 от Tamara »

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #24 : 14 Ноября 2013, 22:46:48 »
  Поставьте опыты

Начну с улиток-катушек, о которых уже писал. Если вы получили первое поколение и убедились в доминировании черной окраски, можете вырастить молодых улиток и получить второе поколение. Любопытно, что здесь для подсчетов не обязательно ждать, пока маленькие улитки вылупятся из икры. Если к стеклам аквариума прижать изнутри другие стекла, наверняка случится так, что гибридные улитки налепят на них лепешки икры. Выньте стекла с икрой и разрежьте их стеклорезом так, чтобы отдельные кучки икринок были на маленьких прямоугольниках, удобных для рассмотрения под лупой. Сложите эти прямоугольники в банку с водой. Когда икра достаточно разовьется, можно будет под лупой или слабеньким микроскопом произвести подсчеты. Различия в цвете будут хорошо видны. В каждой лепешке обычно от 40 до 70 икринок. Желательно просчитать десять — двадцать таких лепешек.



Виды аквариумных рыб иногда отличаются лишь по одному гену.

Раз уж мы начали с аквариума, о нем и продолжим. Самый удобный объект среди рыб — гуппи. Если взять самку из какой-либо короткохвостой породы и скрестить ее с вуалевым самцом, все потомство первого поколения окажется короткохвостым, а во втором поколении выщепятся рецессивы с вуалевыми хвостами. Конечно, картина у гуппи несколько усложнена. Удлинение и расширение хвостов здесь наблюдается лишь у самцов, у всех самок хвосты одинаковые (мы имеем дело с признаком, ограниченным полом). Значит, расщепление можно считать только у самцов, а самок вообще не учитывать. Очень показательно также поставить здесь возвратное скрещивание: гибридную самку скрестить с вуалевым самцом. Соотношение будет 1:1.

Не только породы у аквариумных рыб часто отличаются одна от другой лишь по одному наследственному задатку (гену). Бывает и так, что рыбы, описанные как особые виды, на деле отличаются только по генам. Сейчас в наших аквариумах очень часто встречаются хифессобрикон серпа и хифессобрикон минор. Первый коричневато-вишневый, второй кроваво-красный. Ихтиологи часто относят их к разным видам. А вот мы с тобою, читатель, можем довольно легко опровергнуть ихтиологов. Однако это скрещивание я советую тебе ставить лишь в том случае, если ты уже опытный аквариумист. В первом поколении доминирует окраска «серпа»; все гибриды получаются коричневатыми, они не отличимы от хифессобрикон серпа чистого «вида». А во втором поколении получается расщепление 3:1, в возвратном же скрещивании 1 : 1. Выщепляются чистые «минор». Следовательно, систематики-ихтиологи ошиблись. Это не разные виды, хифессобрикон минор лишь цветная вариация хифессобрикон серпа.

Такого рода ошибки не так уж редки.



Скрещивание черных и белых мышей.

А вот еще одна возможность поправить систематиков, полностью еще не доказанная. Уже много лет знакомы нашим аквариумистам точечные данио. А года четыре назад появились у нас данио леопардовые. Сам я не проверял, но по некоторым наблюдениям почти убедился в том, что леопардовая окраска просто-напросто вызывается новым для нас геном у тех же точечных данио. Почему бы юным натуралистам эту гипотезу не проверить?

Многие ребята увлекаются голубями. Плохо, если при этом они не слезают с крыш, свистят, подгоняя своих питомцев, размахивают палками, занимаются ловлей чужих голубей. И в то же время нет ничего плохого, если голубеводство ведется культурно, ставятся цели улучшения или выведения новых пород. Вот таким-то голубеводам-селекционерам я и хочу помочь, рассказав, как наследуются у голубей некоторые признаки.

Большинство интенсивных окрасок у голубей доминантно. Так, доминантна черная, красная, ярко-сизая. Ослабленные окраски, такие, как бурая, палевая и серебряная, — рецессивы. По-разному наследуется белая окраска. Так, например, дутыши (голуби с сильно увеличенными, «раздутыми» зобами) имеют ген белой окраски, который доминирует над всеми другими генами окраски этой породы. В то же время павлиньи голуби, у которых сильно увеличено число перьев в хвосте, имеют ген белой окраски, рецессивный по отношению ко всем прочим генам окраски, встречающимся у этой породы.

Многим породам голубей свойственны «воротники», «банты», «чубчики». Таков раковиновидный воротник якобинца, таковы «манишки» и «банты» на груди или «огонки» вокруг головы чайки, розочки на голове. Все эти признаки рецессивны по отношению к нормальному оперению. Также рецессивна курчавость как по всему телу, так и курчавость кроющих перьев крыла. Как быть, если у одного из голубей появилось какое-либо украшение такого типа? Скрестив его с нормальным голубем в первом поколении, получим нормальное потомство. Часто голубеводы вот тут-то и отчаиваются. А между тем оснований для огорчений нет ни малейших. Можно скрестить гибридов между собой, и тогда у 25% потомков выщепится желанный признак. Еще лучше поставить возвратное скрещивание. Оно даст уже 50% голубей с рецессивным признаком. К сожалению, голуби откладывают всего только два яйца. Поэтому нужно работать сразу с несколькими парами. Да и от одной пары можно получить голубят несколько раз.

Я уже писал, что Мендель когда-то работал с мышами. Он скрещивал серых и белых. Расщепление в этом случае сложное. Для опытов в биологических кружках лучше взять вместо серых мышей — черных. Они сейчас широко используются для работы в биологических институтах. Скрещивая их с белыми, в первом поколении вы пронаблюдаете доминирование, а во втором — расщепление по соотношению 3:1. Возвратное скрещивание дает 1:1. Мышь — удобный объект для таких опытов. Но ставить их нужно в кружках Домов пионеров или же школ, там, где для живого уголка есть отдельная комната. В домашних условиях на такие опыты вряд ли согласятся родители: от мышей пахнет.

В условиях биологического кружка можно скрестить морских свинок с гладкой шерстью с розеточными. Здесь, как и у голубей, мало потомков, поэтому лучше вести опыт на нескольких самках. В первом поколении будет доминировать гладкая шерсть, во втором выщепляться розеточные.

Опыты с растениями нужно ставить на пришкольном участке. Здесь не всегда просто подобрать исходный материал. Поэтому я не буду давать советов. Следует обратиться на ближайшую селекционную станцию и планировать опыты в зависимости от того, какие семена там окажутся.



Скрещивание гладкошерстных морских свинок с розеточными.

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #25 : 15 Ноября 2013, 12:58:10 »
     Закон независимого комбинирования

Теперь мы можем поговорить о других опытах Менделя, которые привели к открытию закона независимого комбинирования генов — вершины его творчества, основного подарка Менделя человечеству. Действуя по этому закону, селекционеры вывели множество сортов и пород. Пожалуй, не лишне сразу предупредить: тот, кто хорошо усвоил все предыдущее, с легкостью поймет и этот закон. А если усвоили недостаточно, лучше вернуться и просмотреть вновь.

Как быть, если родители различаются не по одной, а по двум парам признаков? Условимся, что доминирование полное. Прежде всего, исходя из предыдущего, сразу определим: каждый из признаков дает во втором поколении соотношение 3:1. Однако каково будет их взаимное комбинирование?

Мы уже знаем, что законы Менделя, первоначально установленные в опытах на горохах, распространяются на все живое. Поэтому в качестве примера, поясняющего закон независимого комбинирования, нам не обязательно брать скрещивание горохов. Пусть нашим объектом в данном случае будут кролики. Родители — самка с обычной шерстью и висячими ушами и самец с удлиненной (ангорской) шерстью, уши у которого торчат вверх. Обычная шерсть здесь доминирует над ангорской, стоячие ушн — над вислоухостъю. Обозначив обычную шерсть через А, ангорскую через а, стоячие уши через В, вислоухость через в, мы сможем записать скрещивание следующим образом:

Р : ААвв × ааВВ

Какие гаметы образуют родители? Пока нам это записать просто: все гаметы самки будут иметь формулу Ав, все гаметы самца — аВ. Отсюда:

F1 : АаВв × АаВв

Все первое поколение обладает обоими доминантными признаками: это кролики с обычной шерстью и стоячими ушами. Оба рецессива «спрятались», подавленные доминантными генами.

На этом кончается первая, наиболее легкая часть нашей задачи. Далее уже будет сложнее. Какие гаметы образует каждый из родителей? Прежде всего А и а, В и в в одну гамету попасть не могут — это противоречило бы принципу чистоты гамет (см. выше). Однако как А, так и а может свободно комбинироваться и с В и с в. Отсюда уже легко понять, что каждый из родителей образует гаметы четырех типов: АВ, Ав, аВ, ав.

Если теперь вы вспомните наш опыт (лотерею с бумажками), поймете, что каждая из четырех типов гамет одного родителя имеет равные шансы для встречи с каждой из четырех гамет другого. В этих условиях написать генотипы всех возможных потомков второго поколения было бы не так-то просто, не приди к нам на помощь ученый Пеннет, который еще в начале нашего века предложил способ, названный решеткой Пеннета.

Вот как выглядит эта решетка:

   АВ    Ав    аВ    ав
АВ    ААВВ    ААВв    АаВВ    АаВв
Ав    ААВв    ААвв    АаВв    Аавв
аВ    АаВВ    АаВв    ааВВ    ааВв
ав    АаВв    Аавв    ааВв    аавв

Сверху над каждой из граф пишется одна гамета одного из родителей, слева возле каждой графы — одна из гамет другого. Затем, мысленно соединяя гаметы, заполняют графы решетки.

Внимательно всмотревшись в таблицу, вы обнаружите, что получились кролики девяти различных генотипов. А чтобы разобраться, каковы же будут они по внешности (фенотипически), мы еще раз повторим ту же решетку, однако уже не только с формулами, но и с рисунками. Легко заметить, что фенотипов четыре.



Скрещивание кроликов, отличающихся по двум признакам: самка с обычной шерстью и висячими ушами и самец с ангорской шерстью и стоячими ушами.

Больше всего животных, обладающих двумя доминантными признаками, их девять. Три животных с обычной шерстью (доминант), но с вислоухостью (рецессив), три с шерстью ангорской (рецессив), но со стоячими ушами (доминант). И, наконец, четвертая группа (одно животное) обнаруживает оба рецессивных признака (висячие уши и ангорская шерсть). Значит, численное соотношение здесь будет 9:3:3:1.

Конечно, не надо думать, что если родится 16 крольчат, то расщепление по фенотипу у них будет точно такое, как выше описано. Как и второй закон Менделя, этот основан на теории вероятности, и соотношение, близкое к 9:3:3:1, возникает лишь при большом числе потомков. Чтобы не быть голословным, приведу цифры, полученные самим Менделем.

Горохи с желтыми семядолями и морщинистыми семенами он скрещивал с растениями, у которых семядоли были зелеными, а семена гладкими. Расщепление во втором поколении у него было такое:

315 АВ : 101 Ав : 108 аВ : 32 ав

Это вовсе не точно 9:3:3:1, но близко к этому соотношению.

Таким образом, когда исходные родители различаются по двум парам генов, признаки комбинируются во втором поколении независимо один от другого и дают в и тоге соотношение 9:3:3:1.

Это соотношение можно вывести не только при помощи скрещивания и построения решетки Пеннета. Можно это сделать и чисто теоретически. По каждому из признаков расщепление по фенотипу бывает: 3:1, т. е. 3А : 1а и 3В : 1в. Перемножим эти соотношения:

(3А + 1а) · (3В + 1в) = 9АВ + 3аВ + 3Ав + 1ав

Этот прием позволяет нам сразу же вывести формулу для еще более сложного расщепления, по трем парам генов:

(3А + 1А) · (3В + 3в) · (3С + 1с)

Можно вывести формулу и для четырех, девяти и т. д. пар генов. В общей форме (для N признаков) формула выглядит так:

(3А + 1a) · (3В + 1в)... (3N + 1n)

Но вернемся к нашему скрещиванию у кроликов. Когда мы рассматривали второй закон Менделя, во втором поколении видели распадение на исходные родительские формы. Что имели в исходном материале, с тем же оказывались и во втором поколении: были горошины гладкие и морщинистые и во втором поколении получаем вновь гладкие и морщинистые.



Обозначив клетчатость через К, коротконогость через Н, напишите все генотипы.



Каким было первое поколение? Нарисуйте.

Иное дело при двух парах факторов, или, как говорят генетики, в дигибридном скрещивании. Тут во втором поколении мы получаем новые комбинации. Их обнаружить совсем нетрудно. Среди родителей было два типа кроликов, а во втором поколении уже четыре. Кролики с обычной шерстью и стоячими ушами, так же как и вислоухие ангоры, — новые комбинации. Поэтому легко понять, что, разработав законы скрещиваний с участием нескольких пар факторов, Мендель вложил в руки селекционеров могучее, безотказно действующее оружие.



Напишите генотип матери и нарисуйте отца.

Выше я описывал голубей двух пород: дутышей и павлиньих. Тогда я не мог еще говорить о селекционных возможностях скрещивания между породами. Теперь читателю будет ясно: таким способом можно вывести интересных декоративных голубей, павлиньих дутышей. Конечно, для этого нужен большой материал.

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #26 : 15 Ноября 2013, 13:06:40 »
          Задачи для самостоятельного решения

Лучше всего помогает усвоить генетику самостоятельное решение задач. Я приведу самые простенькие. Ответов давать не буду — тот, кто читал внимательно, решит легко.

1. Чтобы изучить наследование окрасок у кроликов, юннаты скрестили шесть черных самок с белыми самцами. В первом поколении у двух самок родились только черные крольчата, а от остальных четырех было получено 16 черных и 14 белых. Каковы были генотипы черных самок?



Рогатость — рецессив или доминант? Были ли рога у быка?

2. У человека карие глаза доминируют над голубыми. В одной семье было четверо детей: двое кареглазых и двое голубоглазых. Их мать была голубоглазой. Какого цвета были глаза их отца, а также деда и бабушки по отцу? Перечислить возможные варианты, считая, что расщепление у детей 1:1.

3. В результате скрещивания пшениц получилось 273 остистых колоса и 89 безостых. Составьте гипотезу о генотипах исходных пшениц. Запишите ход скрещивания при помощи менделевских формул.

4. Вы зоотехник зверосовхоза. В вашем распоряжении сотни взрослых рыжих лиеиц и лишь несколько самцов черно-бурых. Считая, что лисица становится взрослой в возрасте одного года, составьте план, согласно которому через год с небольшим вы смогли бы получить одновременно полторы тысячи лисят-чернобурок. При этом будем считать, что в среднем у каждой самки рождается шесть лисят. Рыжая окраска — доминант, черно-бурая — рецессив.



Просчитайте соотношение светлых и темных птенцов и выскажите предположение о генотипе родителей.

Решаем?! ;)  :D

Оффлайн LAV

  • Старожил
  • ****
  • Сообщений: 675
  • Александр
Re: Советы Менделя... или все о генетике
« Ответ #27 : 15 Ноября 2013, 20:35:14 »
Ответ по- видимому один..... [nyam]

Tamara

  • Гость
Re: Советы Менделя... или все о генетике
« Ответ #28 : 15 Ноября 2013, 21:27:47 »
Понятно! А вот другой.  [mocking]


Оффлайн Ната

  • Модератор
  • V.I.P.
  • *****
  • Сообщений: 5173
  • Наташа Московская область Север
Re: Советы Менделя... или все о генетике
« Ответ #29 : 15 Ноября 2013, 21:59:25 »
 :)